Skip to content
Snippets Groups Projects
Commit 40b3e9bf authored by Falguni Ghosh's avatar Falguni Ghosh
Browse files

Upload New File

parent 8ef2066c
Branches
No related tags found
No related merge requests found
import numpy as np
from exercise1_material.src_to_implement.Layers.Base import BaseLayer
class SoftMax(BaseLayer):
def __init__(self):
super().__init__()
self.input_in_backward_path = None
def forward(self, input_tensor):
output = np.ones(input_tensor.shape)
# print(input_tensor)
for i in range(input_tensor.shape[0]):
input_tensor[i] = input_tensor[i] - np.max(input_tensor[i])
output[i, :] = np.exp(input_tensor[i]) / sum(np.exp(input_tensor[i]))
input_tensor = output
self.input_in_backward_path = np.copy(input_tensor)
return input_tensor
def backward(self, error_tensor):
new_error_tensor = np.empty((self.input_in_backward_path.shape[0], error_tensor.shape[1]))
for i in range(self.input_in_backward_path.shape[0]):
new_error_tensor[i, :] = self.input_in_backward_path[i, :] * (
error_tensor[i, :] - sum(error_tensor[i, :] * self.input_in_backward_path[i, :]))
error_tensor = new_error_tensor
return error_tensor
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment