Skip to content
Snippets Groups Projects
Commit 444a6c5a authored by Falguni Ghosh's avatar Falguni Ghosh
Browse files

Upload New File

parent 2cd01454
Branches
Tags
No related merge requests found
import numpy as np
import torch as t
from sklearn.metrics import f1_score
from tqdm.autonotebook import tqdm
print(t.cuda.is_available())
class Trainer:
def __init__(self,
model, # Model to be trained.
crit, # Loss function
optim=None, # Optimizer
train_dl=None, # Training data set
val_test_dl=None, # Validation (or test) data set
cuda=True, # Whether to use the GPU
early_stopping_patience=-1): # The patience for early stopping
self._model = model
self._crit = crit
self._optim = optim
self._train_dl = train_dl
self._val_test_dl = val_test_dl
self._cuda = cuda
# early stopping related variables
self._early_stopping_patience = early_stopping_patience
self._min_loss = np.Inf
self._epochs_without_loss_decrease = None
if cuda:
self._model = model.cuda()
self._crit = crit.cuda()
def save_checkpoint(self, epoch):
t.save({'state_dict': self._model.state_dict()}, 'checkpoints/checkpoint_{:03d}.ckp'.format(epoch))
def restore_checkpoint(self, epoch_n):
ckp = t.load('checkpoints/checkpoint_{:03d}.ckp'.format(epoch_n), 'cuda' if self._cuda else None)
self._model.load_state_dict(ckp['state_dict'])
def save_onnx(self, fn):
m = self._model.cpu()
m.eval()
x = t.randn(1, 3, 300, 300, requires_grad=True)
y = self._model(x)
t.onnx.export(m, # model being run
x, # model input (or a tuple for multiple inputs)
fn, # where to save the model (can be a file or file-like object)
export_params=True, # store the trained parameter weights inside the model file
opset_version=10, # the ONNX version to export the model to
do_constant_folding=True, # whether to execute constant folding for optimization
input_names = ['input'], # the model's input names
output_names = ['output'], # the model's output names
dynamic_axes={'input' : {0 : 'batch_size'}, # variable lenght axes
'output' : {0 : 'batch_size'}})
def train_step(self, x, y):
# perform following steps:
# -reset the gradients. By default, PyTorch accumulates (sums up) gradients when backward() is called. This behavior is not required here, so you need to ensure that all the gradients are zero before calling the backward.
self._optim.zero_grad()
# -propagate through the network
pred_op = self._model(x)
# -calculate the loss
l = self._crit(pred_op, y)
# -compute gradient by backward propagation
l.backward()
# -update weights
self._optim.step()
# -return the loss
#TODO
return l
def val_test_step(self, x, y):
# predict
# propagate through the network and calculate the loss and predictions
# return the loss and the predictions
#TODO
pred_op = self._model(x)
y = y.float()
l = self._crit(pred_op, y)
return l, pred_op
def train_epoch(self):
# set training mode
self._model.train()
# iterate through the training set
# transfer the batch to "cuda()" -> the gpu if a gpu is given
# perform a training step
# calculate the average loss for the epoch and return it
#TODO
num_batch = 0
total_l = 0
for i in tqdm(self._train_dl, desc = 'Training in progress....' ):
x, y = i
if self._cuda:
self._model = self._model.cuda()
self._crit = self._crit.cuda()
x = x.cuda()
y = y.cuda()
total_l += self.train_step(x, y)
num_batch += 1
return total_l / num_batch
def val_test(self):
# set eval mode. Some layers have different behaviors during training and testing (for example: Dropout, BatchNorm, etc.). To handle those properly, you'd want to call model.eval()
# disable gradient computation. Since you don't need to update the weights during testing, gradients aren't required anymore.
# iterate through the validation set
# transfer the batch to the gpu if given
# perform a validation step
# save the predictions and the labels for each batch
# calculate the average loss and average metrics of your choice. You might want to calculate these metrics in designated functions
# return the loss and print the calculated metrics
#TODO
self._model.eval()
self.f1_score_list = []
with t.no_grad():
predictions = []
labels = []
num_batch = 0
total_l = 0
for i in tqdm(self._val_test_dl, desc='Validation in progress....'):
x, y = i
if self._cuda:
self._model = self._model.cuda()
self._crit = self._crit.cuda()
x = x.cuda()
y = y.cuda()
batch_loss, batch_pred = self.val_test_step(x, y)
total_l += batch_loss
num_batch += 1
batch_pred[batch_pred >= 0.5] =1
batch_pred[batch_pred < 0.5] = 0
prediction_crack_inactive = batch_pred.cpu().detach().numpy()
label_crack_inactive = y.cpu().detach().numpy()
f1_score_value = f1_score(label_crack_inactive, prediction_crack_inactive, average='macro')
self.f1_score_list.append(f1_score_value)
predictions.append(batch_pred)
labels.append(y)
return total_l / num_batch, f1_score_value
def fit(self, epochs=-1):
assert self._early_stopping_patience > 0 or epochs > 0
# create a list for the train and validation losses, and create a counter for the epoch
# TODO
train_loss_list = []
validation_loss_list = []
num_epoch = 0
while True:
# stop by epoch number
# train for a epoch and then calculate the loss and metrics on the validation set
# append the losses to the respective lists
# use the save_checkpoint function to save the model (can be restricted to epochs with improvement)
# check whether early stopping should be performed using the early stopping criterion and stop if so
# return the losses for both training and validation
# TODO
if num_epoch == epochs:
print("all epochs ran")
break
avg_train_l = self.train_epoch()
train_loss_list.append(avg_train_l)
avg_val_l, f1_score_value = self.val_test()
validation_loss_list.append(avg_val_l)
print("Num_Epoch: ", num_epoch, "train_loss: ", avg_train_l, "validation_loss: ", avg_val_l, "f1_score: ", f1_score_value)
self.save_checkpoint(num_epoch)
early_stopping_criterion = False
if self._min_loss > avg_val_l:
self._min_loss = avg_val_l
self._epochs_without_loss_decrease = 0
self.save_onnx('checkpoints/checkpoint_{:03d}.onnx'.format(num_epoch))
else: # no need to save model
self._epochs_without_loss_decrease += 1
print("loss did not improve from last min loss")
if self._epochs_without_loss_decrease == self._early_stopping_patience:
print("Early stopping")
early_stopping_criterion = True
if early_stopping_criterion:
break
num_epoch += 1
self.save_onnx('checkpoints/checkpoint_{:03d}.onnx'.format(num_epoch))
return train_loss_list, validation_loss_list, f1_score_value
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment