Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
P
Pytorch Without Pytorch
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Falguni Ghosh
Pytorch Without Pytorch
Commits
65e7e55f
Commit
65e7e55f
authored
1 year ago
by
Falguni Ghosh
Browse files
Options
Downloads
Patches
Plain Diff
Upload New File
parent
a9c1c595
Branches
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
3_RNN/Conv.py
+212
-0
212 additions, 0 deletions
3_RNN/Conv.py
with
212 additions
and
0 deletions
3_RNN/Conv.py
0 → 100644
+
212
−
0
View file @
65e7e55f
import
copy
from
scipy
import
signal
as
sp
from
.Base
import
BaseLayer
import
numpy
as
np
import
math
class
Conv
(
BaseLayer
):
kernels
=
None
weights
=
None
def
__init__
(
self
,
stride_shape
,
convolution_shape
,
num_kernels
):
super
().
__init__
()
self
.
trainable
=
True
self
.
conv
=
True
self
.
stride_shape
=
stride_shape
self
.
convolution_shape
=
convolution_shape
self
.
num_kernels
=
num_kernels
self
.
kernels_shape
=
None
self
.
conv1d
=
False
self
.
output_tensor
=
None
self
.
input_tensor
=
None
self
.
error_tensor
=
None
if
len
(
convolution_shape
)
==
2
:
self
.
kernels_shape
=
(
num_kernels
,
convolution_shape
[
0
],
convolution_shape
[
1
])
self
.
conv1d
=
True
else
:
self
.
kernels_shape
=
(
num_kernels
,
convolution_shape
[
0
],
convolution_shape
[
1
],
convolution_shape
[
2
])
self
.
weights
=
np
.
random
.
uniform
(
0
,
1
,
self
.
kernels_shape
)
self
.
bias
=
np
.
random
.
uniform
(
0
,
1
,
self
.
num_kernels
)
self
.
_gradient_weights
=
None
self
.
_gradient_bias
=
None
self
.
_optimizer
=
None
self
.
optimizer_b
=
None
self
.
optimizer_w
=
None
self
.
input_tensor
=
None
@property
def
gradient_weights
(
self
):
return
self
.
_gradient_weights
@gradient_weights.setter
def
gradient_weights
(
self
,
w
):
self
.
_gradient_weights
=
w
# gradient_weights = property(get_gradient_weights, set_gradient_weights)
@property
def
gradient_bias
(
self
):
return
self
.
_gradient_bias
@gradient_bias.setter
def
gradient_bias
(
self
,
b
):
self
.
_gradient_bias
=
b
# gradient_bias = property(get_gradient_bias, set_gradient_bias)
@property
def
optimizer
(
self
):
return
self
.
_optimizer
@optimizer.setter
def
optimizer
(
self
,
ow
):
self
.
_optimizer
=
ow
self
.
optimizer_b
=
copy
.
deepcopy
(
self
.
_optimizer
)
self
.
optimizer_w
=
copy
.
deepcopy
(
self
.
_optimizer
)
# optimizer = property(get_optimizer, set_optimizer)
def
forward
(
self
,
input_tensor
):
self
.
input_tensor
=
input_tensor
if
self
.
conv1d
:
self
.
output_tensor
=
np
.
empty
(
(
input_tensor
.
shape
[
0
],
self
.
num_kernels
,
math
.
ceil
(
input_tensor
.
shape
[
2
]
/
self
.
stride_shape
[
0
])))
else
:
self
.
output_tensor
=
np
.
empty
((
input_tensor
.
shape
[
0
],
self
.
num_kernels
,
math
.
ceil
(
input_tensor
.
shape
[
2
]
/
self
.
stride_shape
[
0
]),
math
.
ceil
(
input_tensor
.
shape
[
3
]
/
self
.
stride_shape
[
1
])))
for
i
in
range
(
input_tensor
.
shape
[
0
]):
# through every element of the batch
curr_image
=
input_tensor
[
i
]
for
j
in
range
(
self
.
num_kernels
):
c
=
input_tensor
.
shape
[
1
]
tc
=
math
.
floor
(
c
/
2
)
# middle channel
output_image
=
sp
.
correlate
(
curr_image
,
self
.
weights
[
j
],
mode
=
'
same
'
)[
tc
]
# get valid padding across channels
if
len
(
self
.
stride_shape
)
==
2
:
output_image_samp
=
output_image
[
0
:
output_image
.
shape
[
0
]:
self
.
stride_shape
[
0
],
0
:
output_image
.
shape
[
1
]:
self
.
stride_shape
[
1
]]
else
:
if
self
.
conv1d
:
output_image_samp
=
output_image
[
0
:
output_image
.
shape
[
0
]:
self
.
stride_shape
[
0
]]
else
:
output_image_samp
=
output_image
[:,
0
:
output_image
.
shape
[
1
]:
self
.
stride_shape
]
self
.
output_tensor
[
i
][
j
]
=
output_image_samp
+
self
.
bias
[
j
]
return
self
.
output_tensor
def
backward
(
self
,
error_tensor
):
# get gradient w.r.t weight
self
.
error_tensor
=
error_tensor
if
self
.
conv1d
:
compensated_error_tensor
=
np
.
zeros
(
(
self
.
input_tensor
.
shape
[
0
],
self
.
num_kernels
,
self
.
input_tensor
.
shape
[
2
]))
for
k
in
range
(
error_tensor
.
shape
[
2
]):
compensated_error_tensor
[:,
:,
k
*
self
.
stride_shape
[
0
]]
=
error_tensor
[:,
:,
k
]
else
:
compensated_error_tensor
=
np
.
zeros
(
(
self
.
input_tensor
.
shape
[
0
],
self
.
num_kernels
,
self
.
input_tensor
.
shape
[
2
],
self
.
input_tensor
.
shape
[
3
]))
for
k
in
range
(
error_tensor
.
shape
[
2
]):
for
l
in
range
(
error_tensor
.
shape
[
3
]):
compensated_error_tensor
[:,
:,
k
*
self
.
stride_shape
[
0
],
l
*
self
.
stride_shape
[
1
]]
=
error_tensor
[:,
:,
k
,
l
]
self
.
error_tensor
=
compensated_error_tensor
# for i in range(error_tensor.shape[0]):
# for j in range(error_tensor.shape[1]):
# for k in range(error_tensor.shape[2]):
# for l in range(error_tensor.shape[3]):
# compensated_error_tensor[i][j][k * self.stride_shape[0]][l * self.stride_shape[1]] = error_tensor[i][j][k][l]
kernel_rows
=
self
.
weights
.
shape
[
2
]
input_tensor_copy
=
np
.
copy
(
self
.
input_tensor
)
if
self
.
conv1d
:
input_tensor_copy
=
np
.
pad
(
input_tensor_copy
,
((
0
,
0
),
(
0
,
0
),
(
int
(
kernel_rows
//
2
-
(
1
-
kernel_rows
%
2
)),
int
(
kernel_rows
//
2
))),
mode
=
'
constant
'
,
constant_values
=
0
)
else
:
kernel_cols
=
self
.
weights
.
shape
[
3
]
input_tensor_copy
=
np
.
pad
(
input_tensor_copy
,
(
(
0
,
0
),
(
0
,
0
),
(
int
(
kernel_rows
//
2
-
(
1
-
kernel_rows
%
2
)),
int
(
kernel_rows
//
2
)),
(
int
(
kernel_cols
//
2
-
(
1
-
kernel_cols
%
2
)),
int
(
kernel_cols
/
2
))),
mode
=
'
constant
'
,
constant_values
=
0
)
self
.
_gradient_weights
=
np
.
empty
(
self
.
weights
.
shape
)
for
i
in
range
(
input_tensor_copy
.
shape
[
1
]):
for
j
in
range
(
self
.
error_tensor
.
shape
[
1
]):
self
.
gradient_weights
[
j
][
i
]
=
sp
.
correlate
(
input_tensor_copy
[:,
i
],
self
.
error_tensor
[:,
j
],
mode
=
'
valid
'
)
# get gradient wrt bias
self
.
_gradient_bias
=
np
.
empty
(
self
.
num_kernels
)
g1
=
np
.
sum
(
self
.
error_tensor
,
axis
=
0
)
# sum w.r.t. batches
for
i
in
range
(
len
(
self
.
error_tensor
.
shape
)
-
2
):
g1
=
np
.
sum
(
g1
,
axis
=
1
)
self
.
_gradient_bias
=
g1
#v1 = np.copy(self.weights)
if
not
(
self
.
optimizer_w
==
None
):
self
.
weights
=
self
.
optimizer_w
.
calculate_update
(
self
.
weights
,
self
.
_gradient_weights
)
# print(v1==v2,"weights comparison")
if
not
(
self
.
optimizer_b
==
None
):
self
.
bias
=
self
.
optimizer_b
.
calculate_update
(
self
.
bias
,
self
.
_gradient_bias
)
# print(g1==self.,"bias comparison")
# error tensor for next layer
num_channels
=
self
.
error_tensor
.
shape
[
1
]
#fgdebug
if
self
.
conv1d
:
kernels_back
=
np
.
empty
((
self
.
convolution_shape
[
0
],
self
.
num_kernels
,
self
.
convolution_shape
[
1
]))
else
:
kernels_back
=
np
.
empty
(
(
self
.
convolution_shape
[
0
],
self
.
num_kernels
,
self
.
convolution_shape
[
1
],
self
.
convolution_shape
[
2
]))
for
i
in
range
(
self
.
convolution_shape
[
0
]):
for
j
in
range
(
num_channels
):
kernels_back
[
i
][
j
]
=
self
.
weights
[
j
][
i
]
kernels_back
=
np
.
flip
(
kernels_back
,
1
)
c
=
num_channels
tc
=
math
.
floor
(
c
/
2
)
#fgdebug - the change here
if
self
.
conv1d
:
op
=
np
.
empty
((
self
.
error_tensor
.
shape
[
0
],
self
.
convolution_shape
[
0
],
self
.
error_tensor
.
shape
[
2
]))
else
:
op
=
np
.
empty
((
self
.
error_tensor
.
shape
[
0
],
self
.
convolution_shape
[
0
],
self
.
error_tensor
.
shape
[
2
],
self
.
error_tensor
.
shape
[
3
]))
for
i
in
range
(
self
.
error_tensor
.
shape
[
0
]):
# through every element in Batch #fgdebug
for
j
in
range
(
self
.
convolution_shape
[
0
]):
# through every channel
op
[
i
,
j
]
=
sp
.
convolve
(
self
.
error_tensor
[
i
],
kernels_back
[
j
],
mode
=
'
same
'
)[
tc
]
return
op
def
initialize
(
self
,
weights_initializer
,
bias_initializer
):
fan_in
=
np
.
prod
(
np
.
array
(
self
.
convolution_shape
))
fan_out
=
np
.
prod
(
np
.
array
(
self
.
convolution_shape
[
1
::]))
*
self
.
num_kernels
self
.
weights
=
weights_initializer
.
initialize
(
self
.
weights
.
shape
,
fan_in
,
fan_out
)
bias_shape
=
self
.
num_kernels
# removed num_kernels,1
self
.
bias
=
bias_initializer
.
initialize
(
bias_shape
,
fan_in
,
fan_out
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment