Skip to content
Snippets Groups Projects
Commit 5f5a6681 authored by Philip Kaluđerčić's avatar Philip Kaluđerčić :u7121:
Browse files

Define continuity of maps between CPO properly

parent 76b7c38a
No related branches found
No related tags found
No related merge requests found
...@@ -21,8 +21,9 @@ ...@@ -21,8 +21,9 @@
A map on \defn{cpo}{CPOs} A map on \defn{cpo}{CPOs}
\(\phi : \map{(X, \sqsubseteq)}{(X', \sqsubseteq')}\) is \(\phi : \map{(X, \sqsubseteq)}{(X', \sqsubseteq')}\) is
\emph{(Scott-)continuous} if is \de{monotone} and it preserves \emph{(Scott-)continuous} if is \de{monotone} and it preserves
\des{join}, \[ x_0 \sqsubseteq \dots \sqsubseteq \bigsqcup_{i = \des{join} for all chains
0}^\infty x_i \implies \phi(x_0) \sqsubseteq' \dots \sqsubseteq' \phi\left(\bigsqcup_{i = \(\forall \left(x_i\right)_{i \in \mathbb{N}}\):
\[ {\bigsqcup_{i = 0}^\infty}' \phi(x_i) = \phi\left(\bigsqcup_{i =
0}^\infty x_i\right) \] 0}^\infty x_i\right) \]
\end{definition} \end{definition}
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment